top of page

Training Example 1

DER Management

Introduction

This exercise demonstrates an ANM project on a small rural distribution network.

 

It focuses on the fundamentals of DER control and integration to the wider enterprise, addressing real time network analysis and comparing effectiveness of manual and automatic thermal and constraint management.

Learning Objectives

Training Example 1 - DER Management

DER- Windfarm

ANM - Level 1 Controller

ANM - Level 3 / SCADA

Learning Objectives

  • Connecting DERs to SCADA/ANM
  • DER Configuration
  • DER Operating Modes
  • Fundamentals of Load Flow
  • Thermal Constraint Management
  • Voltage Constraint Management
  • Automated Dispatch
Anchor 1

Target Architecture

Level 4 - Enterprise

ZOOM_Main_Model_Level_3A_edited.jpg

Level 3 - Control Centre

Primary_Substation_GSP_External_v100.jpg
BESS_Control_v102.jpg
Level_3_Control_Room_HD.png

Level 2 - Substation

Level 1 - Field

DER 

L-1

DER 

L-1

ANM - Level 1 Controller

DER 

DER - Windfarm

L-1

DER 

L-1

DER 

L-1

DER 

ANM - Level 3 / SCADA

SCADA

ANM

RTU

RTU

Example Network Overview - Embedded DERs

DERs are located at these locations

Network Diagram.png
Generators.png
Craig 1 and Craig 2
Craig_1_2_Generators.png
DER_Tech_Dashboard.png
DER Technical Capabilities
DNO_ANM_Dashboard.png
DNO Operations
DER_Ops_Dashboard.png
DER Operations
Embedded DERs

Network Analysis Engine - Basic Concepts (Demands)

DEmands_x.png
Network Diagram.png
Breaker Modelling
Breakers.png
Demands_1.png
Realtime Demands ( P/Q/A) from SCADA
Breaker Modelling
Demands_2.png
DEmand_Forward_Flow.png
Forward (Demand Related) Powerflows

Realtime Powerflow Calculations

NAE - Demands
NAE - Reverse

Network Analysis Engine - Basic Concepts (Reverse Powerflow)

Network Diagram.png
Generators.png

Reverse (Generation)  Powerflows

Gen_Reverse_Flow.png

Reverse Powerflow 

Forward (Demand Related) Powerflow

DEmand_Forward_Flow.png

Demand Powerflow 

Total Powerflows

Combined_Powerflow.png

Total Powerflow 

TA - Scen1

Level 3 - Control Centre

ZOOM_Main_Model_Level_3A_edited.jpg

Level 2 - Substation

Primary_Substation_GSP_External_v100.jpg

Level 1 - Field

BESS_Control_v102.jpg

DER Controller

DER 

DER 

DER 

DER 

DER 

Training Scenario 1 - Control of DERs Locally

Scenario 1 - Generators not connected to SCADA (Local Mode)

1. Set all DERs' Local Setpoints to 0 MW

2. Set all DERs' to LOCAL MODE

3. Set DERs' Local Setpoints to Maximum

4. Observe Thermal Violations

5. Discuss how to remove overloads

 

DER_Ops_Dash_LOcalMOde.png

DER Local Setpoint

DER_Ops_Dash_LOcalMOde.png

DER Local Mode

Scenario 1

Scenario 2 - Thermal Constraint Management  (Network Changes)

Create constraints in the network:

1. Open Breaker(s)

2. Change Demands

3. Change LIFO Stack Positions

4. Discuss how to resolve overloads

Scenario 2

Scenario 2 - Thermal Constraint Management  (Topology)

Network Diagram.png
ANM_Open_Breakers_0.png
ANM_Open_Breakers_0.png
Total Powerflow
ANM_Open_Breakers_2.png
Open Breakers
ANM_Open_Breakers_2.png
New Flow
ANM_Open_Breakers_3.png
Recalculated Powerflow
TCM – Topology

Scenario 2 - Thermal Constraint Management (Demands)

ANM_Open_Breakers_0.png
Network Diagram.png
ANM_Open_Breakers_0.png
Total Powerflow
Change Demands' Import
TCM – Demands

Scenario 2 - Thermal Constraint Management  [Principle Of Access]

ANM_Open_Breakers_0.png
Network Diagram.png
Principle of Access - LIFO
LIFO 2
LIFO 7
LIFO 1
LIFO 3
LIFO 4
LIFO 5
LIFO 6
LIFO 8
LIFO 2
POA - LIFO
LIFOStack.png
LIFO Stack
POA - Cost
TCM - POA

Level 3 - Control Centre

ZOOM_Main_Model_Level_3A_edited.jpg

SCADA

Level 2 - Substation

Primary_Substation_GSP_External_v100.jpg

Level 1 - Field

BESS_Control_v102.jpg

DER 

DER 

DER 

L-1

L-1

L-1

L-1

DER 

DER Controller

L-1

DER 

L1

Training Scenario 3 - Control of DERs via SCADA

TA - Scen2
Scenario 3

Scenario 3 - Generators connected to SCADA (Remote Mode)

1. Set all DERs' Remote Setpoints to Maximum

2. Set all DERs to Remote MODE


3. Observe Thermal Violations

4. Discuss how to remove overload (POA)


 

ANM_Main_DNO.png

DER Remote Setpoint

ANM_Main_DNO.png

DER Remote Mode

Level 3 - Control Centre

ZOOM_Main_Model_Level_3A_edited.jpg

SCADA

ANM

Level 2 - Substation

Primary_Substation_GSP_External_v100.jpg

Level 1 - Field

BESS_Control_v102.jpg

RTU

L1

DER 

DER 

DER 

L-1

L-1

L-1

L-1

DER 

DER Controller

L-1

DER 

DER 

Training Scenario 4 - Automatic Control of DERs

TA - Scen4

Scenario 4 - Automated control under various conditions

1. Disable SCADA Mode for each DER

2. Enable ANM Mode on each DER

3. Enable ANM Master Control 

4. Discuss LIFO Stack (POA)

ANM_Main_DNO.png

Switch SCADA to ANM

ANM_Main_DNO.png

Enable ANM Master Mode

Scenario 4

Network Analysis Engine - Basic Concepts (Voltage)

Network Diagram.png
Breakers.png
Breaker Modelling
Demands_1.png
Realtime Demands ( P/Q/A) from SCADA
Demands_2.png

Network Busbar Voltages

Voltage_Levels.png
Voltage Issues
ReactivePower_BeerPint.png
Reactive Power
Lagging-Leading_PowerFactor.jpg

S = P + jQ

PF = Active Power (P) / Apparent Power (S) = cos θ 

Power Factor
PQ_Envelope.png
PQ Envelope
NAE - Voltage

Scenario 5 - Effect of DER Reactive Power on System Voltage (Local Mode)

1. Disable Master ANM Control

2. Switch DERs to Local Mode

3. In Generator Controls page, set Voltage Control Mode to MVAr Control

4. Increase the MVAr Local Setpoint (within ratings)

5. Observe Voltage Violations

Controls_VoltageControlMode.png

Voltage Control Mode

Controls_VoltageControlMode.png

MVAr Local Setpoint

Scenario 5

Scenario 6 - Automatic Control of Voltage with ANM Enabled

1. Enable ANM for all DERs (Disable any other active modes)

2. Enable ANM Master switch

4. Change loads' MVAr imports/exports

5. Observe Voltage Violations solved by ANM

Network Diagram.png
ANM_Open_Breakers_1.png

Open Breakers 1

Network Diagram.png
ANM_Open_Breakers_2.png

Open Breakers 2

Scenario 6
bottom of page